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The magnitude of this relative increase in absorb-
ance at high frequencies in the normal state is
stronger in our films than in the single-crystal
measurements of Joyce and Richards. In our case
the energy to the bolometer changes by 12% in the
gap region and by 20% at 210 cm™. The relative
strength of the peaks at 55 and 87 cm™ changes with
the age of the film (stored at 77 °K). This effect
is related to an increase of reflectivity at low fre-
quency relative to high frequency and is more
marked in the superconducting state. As a result,
after several days the 89 cm™ peak appears to
weaken.

Joyce and Richards propose a mechanism for
the structure where the radiation generates elec-
tronic excitations of energy 2A plus a phonon of en-
ergy 7Q. They found however a disagreement of
some 6 cm™ between the 7Q +2A expected and their
observed structure. We find no such disagreement
in our measurements. From tunneling data® the
main peaks in ¢?F(Q), the quantity proposed to de-

A. GAVINI AND T. TIMUSK 3

scribe the process, occur at 56 and 87.5cm™ in ex-
cellent agreement with our peaks at 55 and 87 cm™,
The additional structure we observe can be corre-
lated with various phonon features seen in tunneling
and neutron scattering but our signal-to-noise ratio
(1000) does not permit an unambiguous identification
of this structure. The discontinuity at 42 cm™,
however, does not correspond to any known phonon
singularity in lead but agrees with tunneling data.
Our experimental method is very similar to that of
previous investigators, ® but the phonon structure
described here is at somewhat higher frequency
than the region of interest to those workers, and
requires a high signal-to-noise ratio for identifica-
tion.

In conclusion it appears that the phonon generation
process found by Joyce and Richards is clearly ob-
servable in lead films and provides an alternative
to tunneling measurements.

We would like to thank J. P. Carbotte for en-
couraging us to do this work.
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INTRODUCTION

Recent experiments on the field emission of elec-
trons through atoms adsorbed on metal surfaces~3
have demonstrated the importance of a resonance
tunneling mechanism,!~?

One simple theoretical approach employs a semi-
classical (WKBJ) analysis of the one-dimensional
potential shown in Fig. 1.3~ This is a problem that
has been investigated by semiclassical techniques,
not only in solid-state and surface physics,*~7 but
also in chemical physics when the potential energy
barrier for a reactive collision contains a well,%®
and in nuclear physics when the fission barrier for
heavy nuclei possesses two maxima,!%1

The purpose of this note is first to draw attention
to this body cf work on resonance tunneling in other

branches of physics, and second to consider certain
interesting features of resonance tunneling within
the semiclassical approximation. In particular, for
energies lying well below the barrier maxima, the
transmission coefficient is expressed explicitly in
terms of the resonance energies and widths of the
quasistationary states that exist within the well of
the potential [ see Eq. (5) below]. This is in ac-
cord with the results of Refs., 2-5. The calcula-
tions of Ref. 9 are used.

TRANSMISSION COEFFICIENT

An expression for the transmission coefficient
D valid for energies E lying above or below the bar-
rier maxima V(b,) and V(b,) is considered first,
and then specialized to the case when the energy
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FIG. 1. One-dimensional potential V(x), E is the
energy of the system. Classical turning points are de-
noted by ay, cy, ay, and c,, while b; and b, are the posi-
tions of the barrier maxima., Arrows indicate incident,
reflected, and transmitted waves.

lies well below the barrier maxima.

In Ref. 9, the following first-order semiclassical
expression for the transmission coefficient was de-
rived!?:

D(E) - (T2-1)(T%-1)

T TITZ+1+2T,Tyco8[ 20 - (¢, +¢,)] (W

where « is the phase integral across the well,

a= f‘:zk(x)dx (2)
1

with
k() ={(2m /B[ E- V(x)]}? .
Also, we have

Tj=(1+62;°1)“2 , j=1,2

(3)
@;=€,+argT(}+i€,) - ¢ Inle,|, j=1,2
and

—m€;= [°1|k(x)|dx >0 when E<V(b,)
i=J, F]
or i j=1,2

—me;=Rei [**1k(x)dx <0 when E>V(,) .
iaj

The subscript j refers to the first or second bar-
rier, respectively, When the energy is greater
than the barrier maxima, the classical turning
points ¢, and a, in Eq. (2) are to be replaced by b,
or b,°

Equation (1) is valid for energies greater or less
than the barrier maxima, and hence could be used
in a uniform theory of thermionic and field emission
for the potential in Fig. 1, similar to that for sin-
gle barrier passage, '3

The function ¢; cancels a singularity in the phase
integral a at E=V(b,). This singularity has impor-
tant consequences in the closely related problem of
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orbiting collisions*#!5 and hence is known as the

“orbiting singularity” and ¢, is called a “quantum
correction function. ” Equations (3) arebasedon a
parabolic approximation to a barrier maximum,® 6
although other model forms could also be used, !"

The scattering by the potential may be character-
ized in terms of the complex energy

§=E,-i3T,, E,>0, TI,>0,

where E, is the resonance energy and I', is the lev-
el width, by the application of complex boundary
conditions,.®!® This operation leads to the following
Bohr-Sommerfeld quantization condition for the
complex eigenvalues:

a=m+3)1+3(01+@y)—izInTyT,,
n=0,1,... . (@)

Equation (4) holds for energies above and below the
barrier maxima. In the latter case when I'y <E, ,
Eq. (4) simplifies to®

ay 9 1/2 L L
J F[E,,—V(x)] dx:(n+§)77+3(¢’1n+‘r"zn),
c
1
a Bohr-Sommerfeld quantization condition for the
well, and
7w
rn=—{nlnT1nT2n ’
where w, is the classical angular frequency of os-
cillation in the well and the subscript » on w, ¢,
and T, indicates that E =E, in the definition of these
quantities. In terms of E, and I, , the transmission
coefficient througha resonance becomes®
1 (LI- )2
D(E)=o q——f-tt —
) X, (T, ) +(E,-E) (5)

where X,>1 is an asymmetry factor defined by
Xn= (TlnTZn_ 1)2/(T§n" 1)(T2n_ 1) .

Equation (5) is of a Breit-Wigner (Lorentzian) form
and clearly illustrates the resonance behavior of
the transmission coefficient. The above equations
illustrate the important features of resonance tun-
neling transmission in a straightforward way and
may be regarded as a complement to the point-
match calculations of Refs, 3 and 4.
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The application of the Bloch-Wangsness-Redfield theory of nuclear relaxation to the study
of perturbed angular correlations in even-A nuclei subject to simultaneous static and time-
dependent quadrupole interactions has been treated. The differences in the perturbation factors

as compared to the odd-A case are shown,

In a recent paper! (denoted below by I), we have
treated the application of the Bloch-Wangsness-
Redfield theory of nuclear relaxation to the study
of perturbed angular correlations (PAC) in odd-A
nuclei subject to simultaneous static and time-de-
pendent quadrupole interactions, Stimulated by
recent experimental results? we have investigated
the extension of this formalism to the case of even-
A nuclei (integral spins).

Problems may be expected in the case of integral
spins due to the degeneracy of the hyperfine transi-
tions + -0 and - ¢ -0, where @ represents the
spin projection m;. The result of this degeneracy
in NMR studies is that the resonance line corre-
sponding to these transitions may have a shape made
up of a superposition of Lorentzians,® which would

correspond to the appearance of a combination of
exponentials for the relaxation of the associated
frequency in the perturbed angular-correlation spec-
trum. It is the purpose of this addendum to show
that this effect will in fact occur in perturbed angu-
lar-correlation spectrum.

To demonstrate this, we review first the solution
of the odd-A problem. The basic equation to be
solved is (2.16) of I:

‘;:“'=B§Rﬂtﬁfﬂﬂ'p;;', a—a':B-—ﬁ' (1)

where the matrix elements R, g are combinations
of various spectral densities of the form

Suarner (@)= [ (| KO &)@ K(t=7)| e " .
@



